摘要:2.2滞环比较电压产生电路4.5V~28V的输入电压经调整转换为5V的恒定电压Vcc为后续电路供电。如图3所示,A点电位受运算放大器控制,将等于参考电压1.2V,假设输出Vout为高电平,则M2导通,流过M1的电流为IM1=Vref/R2,B点的电压为VBL=Vin-IM1R1;当Vout为低电平,M2截止,流过M1的电流变为I′M1=Vref/(R2+R3),B点电压升高为VBH=Vin-I
2.2 滞环比较电压产生电路
4.5V~28V的输入电压经调整转换为5V的恒定电压Vcc为后续电路供电。如图3所示,A点电位受运算放大器控制,将等于参考电压1.2V,假设输出Vout为高电平,则M2导通,流过M1的电流为IM1=Vref/R2,B点的电压为VBL=Vin-IM1 R1;当Vout为低电平,M2截止,流过M1的电流变为I′M1=Vref/(R2+R3),B点电压升高为VBH=Vin-I′M1 R1,所以B点电压的变化为ΔVB=VBH-VBL=Vref R1 R3/R2(R2+R3),这意味着Vout由高电平变成低电平时在B点产生的一个滞环电压,可见该滞环电压与输入电压无关,只由参考电压Vref和电阻大小决定,通过选择各电阻的阻值便可设定滞环电压的大小。
图3 滞流比较电压产生电路
2.3 运放实现电路
以上分析可知运算放大器起着重要作用,其必须具有较高的增益,才能使A点电压精确跟随参考电压,从而准确设定B点电平和滞环电压大小。另外由于Vout的变化频率与系统开关频率相同(系统的最大开关频率约为2MHz),使得流过M1的电流也相同频率在IM1和I′M1之间快速切换,所以运放的单位增益带宽须大于系统的最大开关频率。设计的运放结构如图4所示,采用折叠式输入结构,可以获得较大的共模输入电压范围。
图4 运放实现电路
由运放的频率特性仿真图5可知,增益达到84.266dB,相位裕度108°,单位增益带宽约12MHz,满足电路要求。
图5 运放频率特性仿真
通信工程师备考资料免费领取
去领取