摘要:新一代系统装用了改进的发送分集方案。它采用的空间时间编码是不需要反馈的编码,又采用根据通路统计性进行线性预编码,只需要很小反馈。在"空间--时间"编码方案,同一信号经过不同的编码后由多副天线发送。一般可利用分组码,在接收端用线性解码。线性预编码可以和"空间--时间"码结合使用,可能比时延分集系统获取2-6dB的增益,也可
新一代系统装用了改进的发送分集方案。它采用的空间时间编码是不需要反馈的编码,又采用根据通路统计性进行线性预编码,只需要很小反馈。在"空间--时间"编码方案,同一信号经过不同的编码后由多副天线发送。一般可利用分组码,在接收端用线性解码。线性预编码可以和"空间--时间"码结合使用,可能比时延分集系统获取2-6dB的增益,也可能比分组码获取3dB的增益。
也可能从两副基台天线发送两个各自编码的数据流。一个较高数据速率的信号可以是由低速率数据流多组成,每一低速数据流各自经过编码和调制,由不同的天线发送,但利用同一时间和频率槽。在接收端,三套接收天线各自接收两个数据流信号的线性组合,这两个数据流已分别由不同冲击响应所滤波。接收机将两个信号分开,利用空间均衡器,并经过解调、解码和解复接,获取原来信号。接收天线的数目一般应该多于独立发送信号的数目,以期取得较好效果。基台和用户终端各有三副接收天线,可取得接收分集的效果。利用"最大比值合并"MRC,将多个接收机的信号合并,得到最大信噪比SNR,可能有遏止自然干扰的好处。但是,在空间多工的情形,如有两个数据流互相干扰,或者从频率再利用的邻近地区传来干扰,MRC就不能起遏止作用。这时,利用"最小的均方误差"MMSE,它使每一有用信号与其估计值的均方误差最小,从而使"信号与干扰及噪声比"SINR最大。上述MRC和MMSE得出软信号估计,输入至软解码器。它们的适当运用可能对频率选择性通路提供3-4dB性能增益。
同步是重要的,上行和下行传输的开头都有同步槽,用于传送定时相位、定时频率和频率偏移估计,数据和训练序列都由偶数音调传输,而奇数音调为零。这是时域信号的重复形式,便于对上述各项参数作估计。获得了同步后,可从计练音调做出定时估计。新一代无线系统采用自适应调制和编码,以便提供用户的线路参数最佳化,从而获得最大的系统容量。根据用户的SINR统计和QoS要求,应能提供最佳的编码和调制。QAM分级可从4至64,编码可利用卷积码和R-S码。有些编码,可使2MHz通路传送数据速率1。1-6。8Mb/s。
三、MIMO-OFDM无线网的现场测试
上述无线通信网曾经在实验室进行仿真实验测试,也曾在室外现场进行测试。基台是在一幢大楼的屋顶上架设天线,约49英尺高,覆盖区是在半径35英里和120度扇区范围内。基台发射功率为35。5dBm,用户终端发射功率30dBm。下行无线通路使用的中心频率为2。683GHz,上行则为2。545GHz,数据业务占用频带宽度2GHz,基台的发送和接收天线各自相隔16个和8个波长。现场试验主要是为了估计modem的性能和无线通路特性。测试时,覆盖区内用户终端有固定的,也有移动的。测试系统的每一收发信机各有2×3个多径通路,因而它简称2×3系统。
通信工程师备考资料免费领取
去领取