摘要:分别在Vin=2.5V,Vin=28V的情况下,再次对LED驱动电流进行仿真,三次仿真数据结果分别如表1所示。表1三种输入电压情况下的驱动电流在Vin=12V时,对LED驱动电流进行温度特性仿真,三次仿真波形结果分别如表2所示。可以看出,芯片的温度特性较好。表2Vin=12V情况下三种环境温度下的驱动电流由于系统的固定延时τ对电
分别在Vin=2.5V,Vin=28V的情况下,再次对LED驱动电流进行仿真,三次仿真数据结果分别如表1所示。
表1 三种输入电压情况下的驱动电流
在Vin=12V时,对LED驱动电流进行温度特性仿真,三次仿真波形结果分别如表2所示。可以看出,芯片的温度特性较好。
表2 Vin=12V情况下三种环境温度下的驱动电流
由于系统的固定延时τ对电流的纹波存在影响,实际的驱动电流峰值是IMAX +τoff di/dt,电流谷值是IMIN-τON di/dt,τoff为从驱动电流大于设定值到功率开关关闭的系统延时,τon为从驱动电流小于设定值到功率开关导通的系统延时,di/dt是电感电流变化率。则电感若取较大值,对驱动电流平均值影响不大,但可以减小电流纹波,反之,这是以增加外部电感体积为代价的。
电路可达很高的效率,一方面检测电阻中的功耗会导致电源功率耗散,但本设计中RSENSE=0.5Ω,则PRSENSE相当小,另一方面,系统效率定义为LED消耗的功率与电源提供的功率之比,即η=PLED/PPOWER。其中,PPOWER=Vin3 Ivin,PLED=VLED*
,从仿真可知,Ivin的平均值远远小于,
所以系统的效率可以达到非常高。
4 结束语
文中设计了一款适用于降压型LED恒流驱动芯片的滞环控制电路。采用高边电流检测方案,运用滞环电流控制方法对驱动电流进行滞环控制,从而获得恒定的平均驱动电流,通过调节外部检测电阻,可调节恒定LED驱动电流。芯片采用015μm 5V/18V/40V CDMOS工艺,电源电压范围为4.5V~28V,可为LED提供约恒定的350mA驱动电流,温度特性-40℃~125℃,可达到相当高的效率。当Vin从4.5V变化到28V时,平均驱动电流变化22mA,最大恒流精度为6.2%。
通信工程师备考资料免费领取
去领取