摘要:RSA的安全性在于大整数因子分解的难度,其体制构造是基于数论的欧拉定理,产生公开密钥和秘密密钥的方法为:(1)取2个互异的大素数p和q;(2)计算n=p×q;(3)随机选取整数e,且e与(p-1)×(q-1)互为素数;(4)另找一个数d,使其满足(e×d)mod[(p-1)×(q-1)]=1;(n,e)即为公钥;(n,d)为私钥。对于明文M,用公钥(n,e)加密可得到密文C,
RSA的安全性在于大整数因子分解的难度,其体制构造是基于数论的欧拉定理,产生公开密钥和秘密密钥的方法为:
(1)取2个互异的大素数p和q;
(2)计算n=p×q;
(3)随机选取整数e,且e与(p-1)×(q-1)互为素数;
(4)另找一个数d,使其满足(e×d)mod[(p-1)×(q-1)]=1;(n,e)即为公钥;(n,d)为私钥。对于明文M,用公钥(n,e)加密可得到密文C,C=Me mod n;对于密文C,用私钥(n,d)解密可得到明文M,M=Cd mod n。
利用当今可预测的计算能力,在十进制下,分解2个250位质数的积要用数十万年的时间,并且质数用尽或2台计算机偶然使用相同质数的概率小到可以被忽略。由此可见,企图利用公钥和密文推断出明文或者企图利用公钥推断出私钥的难度极其巨大,几乎是不可行的。因此,这种机制为信息传输提供了很高的安全保障。
由上述内容可以发现,无论是对称加密和非对称加密的过程都是完成如下的过程:
(1)产生密钥key;
(2)C=F(M,Key),即使用已经产生的密钥,通过加密算法将明文转换为密文。
(3)数据传输;
(4)M=F’(C,key),即接收方使用解密算法,将密文转换为明文。
通信工程师备考资料免费领取
去领取